Pipelines retrievers (deprecated) reference
Important
The use of the term "retrievers" has been deprecated in version 4.0 and later. It is replaced by the term "knowledge base" and users should consult the knowledge_bases reference content. For backwards compatibility, the retrievers API is still available, but it is recommended to use the knowledge base API for new implementations. This section is covers the deprecated functions only. For the new API, see knowledge_bases.
aidb.RetrieverSourceDataFormat
No longer available. Use aidb.PipelineDataFormat
instead.
Functions
aidb.create_retriever_for_table
(deprecated)
Replaced by aidb.create_table_knowledge_base
Creates a retriever for a given table.
Parameters
Parameter | Type | Default | Description |
---|---|---|---|
name | TEXT | Required | Name of the retriever |
model_name | TEXT | Required | Name of the model to use |
source_table | regclass | Required | Name of the table to use as source |
source_data_column | TEXT | Required | Column name in source table to use |
source_data_type | aidb.PipelineDataFormat | Required | Type of data in that column ("Text"."Image","PDF") |
source_key_column | TEXT | 'id' | Column to use as key to reference the rows |
vector_table | TEXT | NULL | |
vector_data_column | TEXT | 'embeddings' | |
vector_key_column | TEXT | 'id' | |
topk | INTEGER | 1 | |
distance_operator | aidb.distanceoperator | 'L2' | |
options | JSONB | '{}'::JSONB | Options |
index_type | TEXT | 'vector' | Type of index to use for the vector table. |
Index_types
If
index_type
is set tovector
, the system will automatically create a hnsw index on the vector table based on the distance operator used in the retriever. This is the default index type. Thevector
index type is only able to support 2000 dimensions or less. If more dimensions are needed, the index type should be set todisabled
.distance_operator index_type L2 vector_l2_ops
InnerProduct vector_ip_ops
Cosine vector_cosine_ops
L1 vector_l1_ops
If
index_type
is set toivfflat
, the system will create a IVFFlat index on the vector table.If
index_type
is set todisabled
, no index will be created.
Example
SELECT aidb.create_retriever_for_table( name => 'test_retriever', model_name => 'simple_model', source_table => 'test_source_table', source_data_column => 'content', source_data_type => 'Text', );
aidb.create_retriever_for_volume
(deprecated)
Replaced by aidb.create_volume_knowledge_base
Creates a retriever for a given PGFS volume.
Parameters
Parameter | Type | Default | Description |
---|---|---|---|
name | TEXT | Required | Name of the retriever |
model_name | TEXT | Required | Name of the model |
source_volume_name | TEXT | Required | Name of the volume |
vector_table | TEXT | NULL | Name of the vector table |
vector_data_column | TEXT | 'embeddings' | Name of the vector column |
vector_key_column | TEXT | 'id' | Name of the key column |
topk | INTEGER | 1 | Number of results to return |
distance_operator | aidb.distanceoperator | 'L2' | Distance operator |
options | JSONB | '{}'::JSONB | Options |
index_type | TEXT | 'vector' | Type of index to use for the vector table. |
Index_types
If
index_type
is set tovector
, the system will automatically create a hnsw index on the vector table based on the distance operator used in the retriever. This is the default index type. Thevector
index type is only able to support 2000 dimensions or less. If more dimensions are needed, the index type should be set todisabled
.distance_operator index_type L2 vector_l2_ops
InnerProduct vector_ip_ops
Cosine vector_cosine_ops
L1 vector_l1_ops
If
index_type
is set toivfflat
, the system will create a IVFFlat index on the vector table.If
index_type
is set todisabled
, no index will be created.
Example
SELECT aidb.create_retriever_for_volume( name => 'demo_vol_retriever', model_name => 'simple_model', source_volume_name => 'demo_bucket_vol' );
aidb.set_retriever_auto_processing
(deprecated)
Replaced by aidb.set_auto_knowledge_base
Sets the processing mode for this Retriever. This function is used to enable and disable auto-embedding: Live
mode enables auto-embedding and Disabled
disables it.
Parameters
Parameter | Type | Default | Description |
---|---|---|---|
retriever_name | TEXT | Name of retriever for which to enable auto-embedding | |
mode | aidb.PipelineProcessingMode | Desired processing mode |
Example
SELECT aidb.set_retriever_auto_processing('test_retriever', 'Live'); SELECT aidb.set_retriever_auto_processing('test_retriever', 'Disabled');
aidb.delete_retriever
(deprecated)
Replaced by aidb.delete_knowledge_base
Deletes only the retriever's configuration from the database.
Parameters
Parameter | Type | Default | Description |
---|---|---|---|
retriever_name | TEXT | Name of retriever to delete |
Example
select aidb.delete_retriever('test_retriever');
delete_retriever ------------------ (1 row)
Could this page be better? Report a problem or suggest an addition!